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Abstract

Thermoelastic contact problems can posess non-unique and/or unstable steady-state solutions if there is frictional

heating or if there is a pressure-dependent thermal contact resistance at the interface. These two effects have been

extensively studied in isolation, but their possible interaction has never been investigated. In this paper, we consider an

idealized problem in which a thermoelastic rod slides against a rigid plane with both frictional heating and a contact

resistance. For sufficiently low sliding speeds, the results are qualitatively similar to those with no sliding. In particular,

there is always an odd number of steady-state solutions; if the steady-state is unique it is stable and if it is non-unique,

stable and unstable solutions alternate, with the outlying solutions being stable. However, we identify a sliding speed V0
above which the number of steady states is always even (including zero, implying possible non-existence of a steady-

state) and again stable and unstable states alternate. A parallel numerical study shows that for V > V0 there are some

initial conditions from which the contact pressure grows without limit in time, whereas for V < V0 the system will

always tend to one of the stable steady states.
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1. Introduction

Contact problems for thermoelastic bodies can exhibit instability associated with thermomechanical

coupling at the contact interface. Two distinct categories of thermomechanical coupling can be identified.
In static thermoelastic contact, the surface roughness of the contacting bodies will generally cause a local

pressure-dependent thermal contact resistance, resulting in coupling between the elastic problem and the

heat conduction problem (Barber et al., 1980). This can cause instability and erratic behaviour in heat
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exchanger systems involving contacting interfaces (Srinivasan and France, 1985). Instability occurs when

the temperature difference or the heat flux between the contacting bodies exceeds a certain critical value

(Yeo and Barber, 1994). The most common form of instability is associated with heat flow into the more

distortive material, where the distortivity
d ¼ að1þ mÞ
K

ð1Þ
and a, m, K are the coefficient of thermal expansion, Poisson�s ratio and thermal conductivity, respectively.

Static thermoelastic contact problems can also exhibit multiple steady-state solutions for this direction of

heat flow and in some simple systems the criteria for stability and uniqueness of the steady-state have been

shown to be identical (Barber et al., 1980; Barber, 1986). In such cases, disturbance of the system from an

unstable steady-state will cause it to gravitate towards an alternative stable state. However, for some

material combinations, instability can occur for sufficiently high heat fluxes in both directions (Zhang and

Barber, 1990) and unique steady states can be unstable (Zhang and Barber, 1993).

A different category of thermoelastic contact instability can occur if there is sliding between the con-
tacting bodies, in which case the work done against frictional tractions leads to localized heating pro-

portional to the local contact pressure. Instabilities due to this source are found in energy dissipating

systems such as brakes and clutches and are known as frictionally-excited thermoelastic instability (TEI)

(Barber, 1969). The thermomechanical coupling in this case is proportional to the sliding speed V and for a

given system there is a critical sliding speed Vc above which the system is unstable (Dow and Burton, 1972).

If the total contact force is prescribed and there is no wear, the system will then tend to an alternate stable

steady-state involving a reduced contact area (Burton et al., 1973; Zagrodzki et al., 2001). However, if the

displacement is constrained, as in a shaft rotating in a bearing, the pressure may grow without limit, causing
seizure of the system (Burton and Staph, 1967; Tu and Stein, 1995).

In real sliding systems, both effects will be simultaneously present. There will be frictional heating, but

also the surfaces are rough and hence there will be some resistance to heat flow across the interface. In these

circumstances, both categories of TEI might be anticipated, depending on the sliding velocity and the

relative magnitude of the temperature difference between the bodies. However, it is not clear whether the

resulting instabilities will be distinct or whether a single criterion will apply involving all the thermo-

mechanical parameters of the system. In the present paper, we shall investigate this issue in the context of a

very simple model––the sliding of a one-dimensional rod against a rigid wall, with frictional heating and a
pressure-dependent thermal contact resistance.
2. The rod model

Fig. 1 shows a thermoelastic rod AC of length L, built in to a rigid wall at A and separated from a second
rigid wall B by a small gap g. If the rod is heated sufficiently to make contact with the wall at B, the gap will

close and a contact pressure p will be established. The wall at B is assumed to be moving at speed V
perpendicular to the figure, so in the case of contact there will be frictional heating q per unit area given by
q ¼ fVp; ð2Þ
where f is the coefficient of friction. We also suppose that there exists thermal resistance R to heat flow

between C and B that depends on the magnitude of the gap and the contact pressure.

In defining appropriate thermal boundary conditions for this case, it is essential to define the relative

location of the heat source and the thermal resistance (Barber, 1967, 1970; Johansson, 1993). In practical

cases, this will depend on the nature of the sliding materials. For example, if there is a significant difference
in hardness between the materials, we would expect the frictional energy dissipation to arise largely as a
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Fig. 1. The rod model.
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result of plastic deformation in the softer material, which will therefore be the source of most of the heating.

In the present case, we shall assume that the frictional heat source is located at C and hence that any heat
flow to the wall has to pass through the resistance R.

With this assumption, the thermal boundary conditions at C can be written
q1 ¼
TC � TB

R
; ð3Þ

q2 ¼ K
dT
dx

ðLÞ; ð4Þ

q1 þ q2 ¼ fVp; ð5Þ

where q1, q2 are the heat flow into the wall and into the rod respectively and T is temperature. We also note

that the temperature in the rod must satisfy the heat conduction equation
o2T
ox2

¼ 1

k
oT
ot

; ð6Þ
where k is the thermal diffusivity of the rod material and t is time.

The unrestrained thermal expansion of the rod is
D ¼ a
Z L

0

T ðxÞdx ð7Þ
and if this is insufficient to close the gap, we shall have
g ¼ g0 � D; ð8Þ

where g0 is defined as the gap when T ðxÞ ¼ 0 for all x. If D > g0, the rod will contact the wall and elementary

calculations show that the resulting contact pressure, assuming quasi-static conditions, will be given by
� pL
E

¼ g0 � D; ð9Þ
where E is Young�s modulus for the rod material. Following Barber et al. (1980), it is convenient to regard

Eq. (8) as defining a �generalized� gap function g such that
g ¼ � pL
E

if p > 0: ð10Þ
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With this notation, the same equations apply for both contact and separation, except that the term fVp in

(5) must be set to zero when g > 0.

Eqs. (3)–(9), including the inequality constraints, completely define the transient behaviour of the sys-

tem, where the resistance R is assumed to be a continuous function of g. The same equations must therefore
define both the steady-state solutions and their stability.
3. The steady-state problem

We first investigate the possible steady states of the system. In particular, we seek to establish conditions

under which a steady-state exists and is unique. In the steady-state, Eq. (6) has only the linear solution
T ðxÞ ¼ TAxþ TCðL� xÞ
L

ð11Þ
and hence
D ¼ aLðTA þ TCÞ
2

ð12Þ
from (7).

Eliminating q1, q2 from Eqs. (3)–(5) and using (11), we obtain
TC � TB
R

¼ fVp þ KðTA � TCÞ
L

ð13Þ
from which
TC ¼ KRTA þ LTB
ðLþ KRÞ þ fVpRL

ðLþ KRÞ ð14Þ
and hence
D ¼ aLTA þ
aL2fVpR
2ðKRþ LÞ �

aL2ðTA � TBÞ
2ðKRþ LÞ ð15Þ
from (12).

Using this result, Eq. (8) and the associated inequalities can be combined in the equation
FðgÞ � g � ðg0 � aLTAÞ �
bVV KgHð�gÞRðgÞ
ðKRðgÞ þ LÞ � aL2ðTA � TBÞ

2ðKRðgÞ þ LÞ ¼ 0; ð16Þ
where
bVV ¼ fVEaL
2K

ð17Þ
is a dimensionless sliding speed and HðgÞ is the Heaviside step function.
4. Stability of the steady-state

Eq. (16) defines a function FðgÞ that must be zero at any steady-state of the system. Notice that the

function is continuous, since the term containing the Heaviside function is zero at g ¼ 0.
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The stability of the corresponding steady states can be investigated by determining the conditions under

which a small temperature perturbation can grow exponentially in time. We first note that the heat flow out

of the rod at the end C is
q � �q2 ¼
TC � TB

R
� fVp ð18Þ
from (3), (5) and hence, for small perturbations Dq, DTC, Dp about a steady-state,
Dq ¼ DTC
R

� ðTC � TBÞR0

R2
Dg � fV Dp; ð19Þ
where the quantities R, TC, p define the steady-state conditions.

Substituting (14) into (19) and using
Dp ¼ �EDg
L

; ð20Þ
we obtain
Dq ¼ DTC
R

� KðTA � TBÞR0

RðLþ KRÞ Dg � fVpLR0

RðLþ KRÞDg þ
fVE
L

Dg: ð21Þ
For transient perturbations of the form T ðx; tÞ ¼ HðxÞ expðbtÞ, Barber et al. (1980) showed that
Dq ¼ �BKk coshðkLÞebt; ð22Þ

DTC ¼ B sinhðkLÞebt; ð23Þ

Dg ¼ �Ba
k
ebt½coshðkLÞ � 1�; ð24Þ
where k ¼
ffiffiffiffiffiffiffiffi
b=L

p
and B is an arbitrary constant.

Substituting (22)–(24) into (21), using
p ¼ �Eg
L

; z ¼ kL ð25Þ
and multiplying by z, we obtain
K
L
z2 coshðzÞ þ 1

L
z sinhðzÞ þ aKLðTA � TBÞR0

RðLþ KRÞ

�
� fVLEagR0

RðLþ KRÞ � fVEa
�
ðcoshðzÞ � 1Þ ¼ 0: ð26Þ
This equation is of the form
C1z2 coshðzÞ þ C2z sinhðzÞ þ C3ðcoshðzÞ � 1Þ ¼ 0 ð27Þ
with C1 > 0 and C2 > 0. Under these conditions, Barber et al. (1980) showed that all the zeros of (27) will

satisfy the condition RðbÞ < 0 (indicating stability), if and only if
2C1 þ 2C2 þ C3 > 0: ð28Þ
In the present case, this leads to the stability criterion
2K
L

þ 2

L
þ aKLðTA � TBÞR0

RðLþ KRÞ � fVLEagR0

RðLþ KRÞ � fVEa > 0 ð29Þ
or, after multiplying by the positive constant RL=2ðLþ KRÞ and using (17),
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1þ aKL2ðTA � TBÞR0

2ðLþ KRÞ2
�
bVV KLgR0

ðLþ KRÞ �
bVV KR

ðLþ KRÞ > 0: ð30Þ
Comparison with Eq. (16) shows that (30) can be written
dF

dg
> 0: ð31Þ
In this proof, we have tacitly assumed that there is contact ðp > 0; g < 0Þ so that Hð�gÞ ¼ 1. If g > 0, all
the equations are modified by omitting the terms involving V , which is equivalent to setting bVV ¼ 0 in (16),

(30), leaving the conclusion unchanged. The presence of the step function implies that F is undifferentiable

at the transition g ¼ 0 between contact and separation. In the special case where a steady-state occurs at

this point, its stability can be determined by examining the signs of the left and right derivatives of F.
5. Existence, uniqueness and stability

Some insight into the existence and stability of solutions can be gained by considering the behaviour of

F as g ! �1.

The resistance function RðgÞ must be a positive function of g and hence F ! 1 as g ! 1. However, at

the opposite extreme g ! �1, we have
F ! 1

 
�

bVV KR1

ðKR1 þ LÞ

!
g � ðg0 � aLTAÞ �

aL2ðTA � TBÞ
2ðKR1 þ LÞ ; ð32Þ
where
R1 ¼ lim
g!�1

RðgÞ: ð33Þ
It follows that if
bVV < bVV0 � 1þ L
KR1

; ð34Þ
we shall have F ! �1 as g ! �1. In this case, F is a continuous function of g extending from þ1 to

�1 and hence (16) must have an odd number of roots (except in the case of repeated roots) and in par-

ticular, at least one root, thus establishing an existence theorem for the system for bVV < bVV0.

Furthermore, since F has to cross the g axis from the negative to the positive side with increasing g, we
conclude from (31) that when the steady-state is unique it must also be stable. If there is an odd number of

steady states, they must be alternately stable and unstable, the outermost states being stable. This con-
clusion agrees with that of Barber et al. (1980) for the system without frictional heating (bVV ¼ 0). Thus, the

inclusion of frictional heating does not cause a qualitative difference in the system behaviour for sufficiently

small sliding speed, defined by (34). Notice also that condition (34) holds for all sliding speeds if R1 ¼ 0.

If bVV > bVV0, F will tend to þ1 at both extremes and the number of roots of (16) must be even or zero.

Thus, there is no guarantee of existence of a steady-state in this case. If some steady states exist, they must

be alternately stable and unstable, with the solution at the largest value of g being stable, since the condition

F ! 1 as g ! 1 implies that the last zero crossing occurs from the negative to the positive side with

increasing g. Thus, the solution at the smallest value of g (or the largest contact pressure) must be unstable.
This raises the question as to what will be the transient behaviour of the system if it is perturbed from this

unstable steady-state? Clearly, for certain perturbations it will gravitate towards the stable steady-state, but
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if the sign of the perturbation is changed, we might expect a state in which the contact pressure increases

without limit. This is also the probable outcome in cases where there is no steady-state.
6. A special case

To explore these questions more thoroughly, we consider the special case where
RðgÞ ¼ B� A
g

if g < 0

¼ 1 if g > 0:

ð35Þ
In other words, no heat flow occurs between the rod and the wall when there is a gap, however small, and

the resistance to heat flow during contact contains a constant term and a term which is inversely pro-

portional to contact pressure. This is a reasonable approximation to experimental observations and the-

oretical predictions of thermal contact resistance (Cooper et al., 1969; Shlykov and Ganin, 1964). In this

case, R1 ¼ B > 0 and we anticipate problems of non-existence of the steady-state at sufficiently high sliding

speeds. An alternative interpretation of Eq. (35) is that the term A=g represents the resistance between the

rod and the wall associated with the roughness of the contacting surfaces, whilst the constant term B
represents the resistance to heat flow from the wall to the environment.

Substituting (35) into (16), we obtain (after some algebra)
g � ðg0 � aLTAÞ ¼
aLðTA � TBÞf ðgÞ

2
þ
bVV KHð�gÞðBg � Af ðgÞÞ

ðLþ KBÞ ; ð36Þ
where
f ðgÞ ¼ L
KRðgÞ þ L

¼ 0 if g > 0

¼ Lg
Lg þ KBg � KA

if g < 0

ð37Þ
is a continuous monotonic function of g which tends to a maximum value of 1=ð1þ BK=LÞ as g ! �1.

Eq. (36) can be rearranged as
f ðgÞ ¼ FcðgÞ if g < 0 ð38Þ
¼ FsðgÞ if g > 0; ð39Þ
where
FcðgÞ ¼ g 1

  
�

bVV KB
ðLþ KBÞ

!
� ðg0 � aLTAÞ

!
aLðTA � TBÞ

2

 ,
�

bVV KA
ðLþ KBÞ

!
ð40Þ

FsðgÞ ¼
2g � 2ðg0 � aLTAÞ

aLðTA � TBÞ
ð41Þ
showing that steady-state solutions for the system are defined by intersections between the function f ðgÞ of
(37) and separate straight line segments in the regions g < 0 and g > 0.

A graphical interpretation of the solution of Eqs. (38), (39) is shown in Fig. 2(a–d). The left hand side of
these equations is represented by the curve f ðgÞ in the range g < 0 and by the g-axis in g > 0, whilst the

right hand side is represented by the two line straight line segments FcðgÞ; FsðgÞ of (40), (41).
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Fig. 2. (a) Graphical solution of Eqs. (38), (39) when F1 < 0 and TA � TB < 0. (b) Graphical solution when F1 > L=ðLþ KBÞ and

TA � TB < 0. (c) Graphical solution when 0 < F1 < L=ðLþ KBÞ, and TA � TB < 0. (d) Graphical solution when 0 < F1 < L=ðLþ KBÞ,
and TA � TB > 0.
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It can be shown that the lines FcðgÞ, FsðgÞ always pass through the point P ðg1; F1Þ, where
g1 ¼ � 2KAðg0 � aLTAÞ
aLðTA � TBÞKB� 2KA

; F1 ¼ � 2KBðg0 � aLTAÞ
aLðTA � TBÞKB� 2KA

: ð42Þ
This point is independent of bVV , so as bVV is increased, the line segment FcðgÞ simply rotates about the point P ,
whilst FsðgÞ remains unchanged at the slope corresponding to bVV ¼ 0. Notice that F1 ¼ Bg1=A, so the point P
lies on a straight line of slope B=A passing through the origin as shown.

The evolution of the intersections obtained with increasing bVV and hence the qualitative behaviour of the
system depends on

(1) whether the point P lies in the segment F1 < 0, 0 < F1 < L=ðLþ KBÞ, or F1 > L=ðLþ KBÞ, and
(2) the slope of the line segment FsðgÞ.

For the case illustrated in Fig. 2(a), F1 < 0 and FsðgÞ has negative slope corresponding to TA � TB < 0,

from (41). In this case, there is a unique stable steady-state involving contact for bVV ¼ 0, represented by the

intersection Q0. If bVV is increased, the line segment FcðgÞ rotates counterclockwise about P , causing the
intersection to move towards increasingly negative g. In other words, the steady-state contact pressure
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increases with increasing speed, as we should expect. We know that this unique steady-state must also be

stable, from Section 5. However, when we reach the value
bVV ¼ bVV0 � 1þ L
KB

ð43Þ
the line segment FcðgÞ becomes horizontal and the predicted contact pressure becomes unbounded. ForbVV > bVV0, there is no intersection between FcðgÞ and f ðgÞ and hence the system has no steady-state. Notice

that the value bVV0 agrees with that established in (34) for the resistance law (35).

Similar arguments can be used to predict the behaviour for other cases, involving different locations for
the point P and different initial slopes for the line PQ. Three additional cases are illustrated in Fig. 2(b–d).

Fig. 2(b) corresponds to the case F1 > L=ðLþ KBÞ and TA � TB < 0, for which there is a stable separation

solution Q1 for all values of bVV . This solution is unique for bVV < bVV0, but above bVV0 the line segment FcðgÞ
intersects the curve f ðgÞ defining a second (unstable) steady-state Q2 involving contact, for which the

contact pressure falls with increasing bVV .

Fig. 2(c) corresponds to a case 0 < F1 < L=ðLþ KBÞ, and TA � TB < 0 in which there are three steady-

state solutions at bVV ¼ 0, one involving separation and the other two contact. The intermediate solution Q2

is unstable and the outer solutions Q1, Q3 are stable. Increasing bVV causes the two intersections Q2, Q3 to

diverge until Q3 disappears for bVV P bVV0.

Fig. 2(d) corresponds to the case 0 < F1 < L=ðLþ KBÞ, and TA � TB > 0, for which there is a unique

stable contact solution Q for bVV ¼ 0. Increasing bVV in this case corresponds to clockwise rotation of the line

segment FcðgÞ, which increases the contact pressure in the steady-state. Above bVV ¼ bVV0, a second (unstable)

steady-state Q2 is obtained at large contact pressure, whilst Q1 remains stable. The two intersections move

towards each other with increasing bVV until they merge when the line segment FcðgÞ is tangential to the curve

f ðgÞ. We define the speed at which this tangential condition occurs as bVVt . For bVV > bVVt , there are no steady-

state solutions.

The conclusions from these and other cases can be summarized as follows:

(i) F1 < 0 or F1 > L=ðLþ KBÞ.
(a) If g0 � aLTA > 0, the system has a stable steady-state involving separation (g > 0) for all values ofbVV . This solution is unique for bVV < bVV0, but a second solution involving contact (g < 0) is obtained

for bVV > bVV0 and the corresponding contact pressure falls with increasing bVV . This contact solution is

always unstable.

(b) If g0 � aLTA < 0, there is a unique stable contact solution for bVV < 0 and the corresponding contact

pressure increases with bVV , becoming unbounded at bVV ¼ bVV0. For bVV > bVV0 there is no steady-state

solution.
(ii) 0 < F1 < L=ðLþ KBÞ.

(a) If g0 � aLTA > 0, the system has a stable steady-state involving separation (g > 0) for all values ofbVV , but depending on the value of TA � TB it may also have two contact solutions at bVV ¼ 0. If so, the

lower pressure solution is unstable, the higher pressure solution is stable and these solutions move

apart with increasing bVV , until the solution with the higher contact pressure becomes unbounded atbVV ¼ bVV0. For bVV > bVV0 there is one unstable contact solution as well as the stable separation solution.

(b) If g0 � aLTA > 0 and the separation solution is unique at bVV ¼ 0, there will be a value bVVtð<bVV0Þ at

which we obtain a double contact root, corresponding to the case where the line segment FcðgÞ
is tangent to the curve f ðgÞ. For bVVt < bVV < bVV0, the roots bifurcate with increasing bVV , the solution

with the lower contact pressure being unstable, whilst that with the higher contact pressure is stable,

the corresponding contact pressure becoming unbounded at bVV ¼ bVV0. For bVV > bVV0 there is one un-

stable contact solution as well as the stable separation solution.
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(c) If g0 � aLTA < 0, there is a unique stable contact solution for bVV < bVV0 and the corresponding contact

pressure increases with bVV . For bVV0 < bVV0 < bVVt a second unstable contact solution is obtained for

which the contact pressure decreases with increasing bVV . At bVV ¼ bVVt , the two roots merge and forbVV > bVVt , there is no steady-state solution.
7. Numerical simulation

The above summary confirms that for bVV < bVV0 there is always an odd number (one or three) of steady-
state solutions, whereas for bVV > bVV0 there are either zero or two steady states. To explore the transient

behaviour of the system, a numerical model of the system was constructed. Details of the numerical al-

gorithm are given in Appendix A. In all the examples the rod was divided into 100 finite elements of equal

length.

In the first example, the parameters 1 were chosen such that F1 < 0 and g0 � aLTA < 0, corresponding to

case (i)b of Section 6, for which there is a unique bounded steady-state solution with contact for bVV < bVV0

and no steady-state solution for bVV > bVV0.

Fig. 3 shows the evolution of the contact pressure with time at two different sliding speeds, bVV ¼ 0:95bVV0

and bVV ¼ 1:05bVV0. As initial conditions a linear distribution was used with TAðt ¼ 0Þ ¼ 0 and 21 evenly

spaced values of TC (t ¼ 0) between 0 and 1000, giving two series of 21 curves each. The results confirm that

when bVV ¼ 0:95bVV0 the pressure tends to a unique finite value for all initial conditions, whereas whenbVV ¼ 1:05bVV0 it grows without limit.

In the second example parameters were chosen 2 to give F1 > L=ðLþ KBÞ and g0 � aLTA > 0, corre-

sponding to case (i)a of Section 6. Fig. 4 shows the evolution of the temperature TC for bVV > bVV0 and 51

different initial states. The results show that for low initial values of TC, the temperature drops with time,

tending eventually to the stable separation state, whereas for large initial values, the temperature and
contact pressure grows without limit.

Fig. 5 shows a similar set of results where the initial conditions were chosen to be within ±1 temperature

units of the unstable steady-state solution involving contact. Deviation from this state is initially very slow,

but eventually the trend is as in Fig. 4, with the final state depending on the sign of the initial deviation from

the unstable steady-state. In both Figs. 4 and 5, a change in the time derivative of TC is detectable at the

point where the rod loses contact with the wall. This is of course associated with the corresponding dis-

continuity in derivative of the resistance function (35). However, any practical resistance function will

involve a rapidly changing resistance near the transition from contact to separation, implying the necessity
for careful time and space discretization in this range.

In the final example, parameters were chosen 3 corresponding to case (ii)a of Section 6, with two contact

solutions and one separation steady-state at bVV ¼ 0. Fig. 6 shows the evolution of TC with bVV < bVV0 and

various initial conditions. For low initial values of TC, the system evolves towards the separation steady-

state, whereas for high initial values it tends to the stable contact steady-state. With these parameters, the

system also has an unstable steady-state involving contact. Starting from an initial condition close to this

state results in initially much slower deviation from the steady-state, but ultimately the results are similar to

those shown in Fig. 6. With the same parameters but bVV > bVV0, the stable contact solution is lost and the
system evolution is qualitatively similar to that shown in Fig. 4.
1 The parameters were k ¼ 1, K ¼ 1, L ¼ 10, f ¼ 1, E ¼ 1, a ¼ 2:4� 10�3, A ¼ 1, B ¼ 100, g0 ¼ �1, TA ¼ 0 and TB ¼ 1000 in some

nsistent set of units. If these units are taken to be SI-units, the units of time will be seconds.
2 k ¼ 1, K ¼ 1, L ¼ 10, f ¼ 1, E ¼ 1, a ¼ 2:4� 10�3, A ¼ 1, B ¼ 25, g0 ¼ 4, TA ¼ 0 and TB ¼ 1000.
3 k ¼ 1, K ¼ 1, L ¼ 10, f ¼ 1, E ¼ 1, a ¼ 2:4� 10�3, A ¼ 1, B ¼ 10, g0 ¼ 4, TA ¼ 0 and TB ¼ 1000.



Fig. 4. Evolution of TC for an example of case (i)a.

Fig. 3. Evolution of the contact pressure p for an example of case (i)b.
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8. Discussion

In investigations of frictionally-excited TEI, the critical speed is generally defined as that at which the

solution involving full contact becomes unstable. Transient analyses of such systems typically show that the

system then tends to an alternative stable steady-state involving partial contact (Zagrodzki et al., 2001).

The present results show that the concept of stability is rather more complex for the rod model. The

introduction of a pressure-dependent contact resistance introduces the possibility of non-uniqueness of the
steady-state even when the sliding speed bVV ¼ 0 and in this case at least one of the steady states is unstable.

However, if bVV < bVV0 the system always tends eventually to a stable steady-state.

For bVV > bVV0, there are always some initial conditions for which the long time transient solution involves

unbounded growth of the contact pressure. This is analogous to the phenomenon of seizure of journal

bearings (Burton and Staph, 1967; Tu and Stein, 1995). However, if g0 � aLTA > 0 there is a stable sepa-

ration solution at all speeds and this will be the long time state for some initial conditions.



Fig. 5. Evolution of TC for initial conditions near to the unstable steady-state of the system of Fig. 4.

Fig. 6. Evolution of TC for an example of case (ii)a.
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If g0 � aLTA < 0 so that there is no separation solution, seizure will occur for all initial conditions whenbVV > bVV0, unless 0 < F1 < L=ðLþ KBÞ.
In the special case where g0 � aLTA < 0 and 0 < F1 < L=ðLþ KBÞ, we can define a second transition

speed bVVt , corresponding to the speed at which the line segment FcðgÞ is tangent to the curve f ðgÞ in Fig. 2(d).

In this case, seizure will always occur when bVV > bVVt , but depending on the initial conditions, the long time
state may be either seizure or the stable contact solution (Q1 in Fig. 2(d)) for bVV0 < bVV < bVVt .
9. Conclusions

In the present paper, we have investigated the interaction between frictional heating and heat conduction
across a pressure-dependent thermal contact resistance at a contact interface in the idealized problem of a
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thermoelastic rod contacting a rigid wall at prescribed temperature. For sufficiently low sliding speeds

ðbVV < bVV0Þ, the results are qualitatively similar to those with no sliding. In particular, the number of steady-

state solutions is odd; if the steady-state is unique it is stable and if it is non-unique, stable and unstable

solutions alternate, with the outlying solutions being stable. By contrast, for bVV > bVV0 either there are no
steady-state solutions (non-existence of solution) or the number of steady states is even. In the latter case,

stable and unstable states again alternate, so that there is always an outlying unstable steady-state. Notice

that the limiting speed bVV0 is defined by Eq. (34) and depends only on the properties of the rod and the

limiting value of contact resistance as contact pressure p ! 1.

A numerical study for the special case where the resistance function is defined by Eq. (35) shows that

when the system has no steady states, the contact pressure grows without limit from any initial condition. If

it has steady states, but bVV > bVV0, the system will either tend to a stable steady-state or the contact pressure

will increase without limit, depending on the initial condition. In all cases, if V < V0 the system will tend to
one of the stable steady states.
Appendix A

In this section the numerical method used for the examples in Section 7 above is outlined. In this method

the entire problem is solved (after discretization) as a system of (non-smooth) equations at each timestep

using a direct application of Newton�s method.

The equations to be solved are
o2T
ox2

� 1

k
oT
ot

¼ 0; 0 < x < L; ðA:1Þ
K
oT
ox

þ 1

2
ð1� signðgÞÞ g

Bg � A
ðTC

�
� TBÞ þ

fVgE
L

�
¼ 0; x ¼ L; ðA:2Þ
g � g0 þ a
Z L

0

T dx ¼ 0; ðA:3Þ
where signðgÞ ¼ 1 if gP 0 and signðgÞ ¼ �1 if g < 0. The temperature at x ¼ 0, the temperature TB of the

moving wall, the initial gap (or pressure) g0 and the initial temperature distribution are prescribed. In the

actual implementation a dimensionless form of the equations was used.

For the discretization, the rod is divided into nþ 1 finite elements so that there are n internal nodes. A

sequence of times ½tstart; . . . ; tk; tkþ1; . . . ; tfinal� is introduced. Eqs. (A.1)–(A.3) will be discretized to form a
system of nþ 2 non-linear equations for the n temperatures at the internal nodes, the temperature at x ¼ L
and g, all at time tkþ1 and assuming that everything is known at time tk. In what follows, T k

i is the tem-

perature at spatial node i, T k
C is the temperature at x ¼ L and gk is the value of g, at time tk.

First, discretizing Eq. (A.1) by linear finite elements in the spatial coordinate and an Euler type back-

ward finite difference in time we obtain at each internal node
fi ¼
1

hiþ1

�
� chiþ1

2

�
T kþ1
iþ1 � 1

hiþ1

�
þ 1

hi�1

þ chiþ1 þ chi�1

�
T kþ1
i þ 1

hi�1

�
� chi�1

2

�
T kþ1
i�1

þ chiþ1

2
T k
i�1 þ ðchiþ1 þ chi�1ÞT k

i þ chi�1

2
T k
i�1 ¼ 0 i ¼ 1; . . . ; n; ðA:4Þ
where hiþ1 and hi�1 are the length of the elements to the left and right of node i, respectively and

c ¼ 1=3kðtkþ1 � tkÞ.



5596 M. Ciavarella et al. / International Journal of Solids and Structures 40 (2003) 5583–5597
Next, Eq. (A.2) is discretized using a four-point finite difference approximation for oT=ox since it was

suspected, and confirmed by some numerical experiments, that this would improve the accuracy compared

to using a simple two point formula. Thus
fnþ1 ¼ 11=6T kþ1
C � 3T kþ1

n þ 3=2T kþ1
n�1 � 1=3T kþ1

n�2 þ 1

2
ð1� signðgkþ1ÞÞ Dhgkþ1

Bgkþ1 � A
ðT kþ1

C

�
� T kþ1

B Þ

þ DhfVgkþ1E
L

�
¼ 0; ðA:5Þ
where Dh is the length of the four elements at the right end of the rod; these elements are assumed to have

equal length for the sake of this discretization.

Finally, Eq. (A.3) is discretized as
fnþ2 ¼ gkþ1 � g0 þ a
Xnþ1

i¼0

T kþ1
i wi ¼ 0; ðA:6Þ
where the wi are appropriate integration weights.

Eqs. (A.4)–(A.6) form a system of 2nþ 2 nonlinear equations for the nþ 2 unknowns T kþ1
i , T kþ1

C and

gkþ1. Putting
f ðzÞ ¼ ðf1; . . . ; fi; . . . ; fn; fnþ1; fnþ2Þt
and
z ¼ ðT kþ1
1 ; . . . ; T kþ1

i ; . . . ; T kþ1
n ; T kþ1

C ; gkþ1Þt
the solution is found by a direct application of Newton�s method, that is, finding a solution to f ðzÞ ¼ 0 by
applying
� of

ozj
Dzj ¼ KDzj ¼ f ðzjÞ

zjþ1 ¼ zj þ Dzj

ðA:7Þ
repeatedly until kf k2 < tol. Here a subscript j refers to the Newton iterations. The derivatives of fi and fnþ2

needed to form K are easily computed. Equation fnþ1 is, unfortunately, not differentiable in the usual sense,

but it has the property of being B-differentiable, meaning essentially that directional derivatives exist at

each point. This makes it possible to apply the Newton method deviced for such equations by Pang (1990).

Here, a somewhat simplified version of this method was used where the necessary derivatives were com-
puted by arbitrarily picking one such directional derivative at non-differentiable points, see Christensen

et al. (1998). In the present implementation the following derivatives of fnþ1 with respect to T kþ1
C and gkþ1

were used
ofnþ1

oT kþ1
C

¼
11
6
þ Dhgkþ1

Bgkþ1�A g < 0
11
6

gP 0

(
ðA:8Þ
ofnþ1

ogkþ1
¼

Dh
Bgkþ1�A �

BDhgkþ1

ðBgkþ1�AÞ2

� �
ðT kþ1

C � T kþ1
B Þ þ DhfVgE

L g < 0

0 gP 0

(
ðA:9Þ
while the remaining derivatives are easily computed. In most of the numerical computations Newton�s
method was applied with the linesearch method suggested by Pang (1990).
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